The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis.

نویسندگان

  • S E Clark
  • S E Jacobsen
  • J Z Levin
  • E M Meyerowitz
چکیده

The CLAVATA (CLV1 and CLV3) and SHOOT MERISTEMLESS (STM) genes specifically regulate shoot meristem development in Arabidopsis. CLV and STH appear to have opposite functions: c1v1 and Clv3 mutants accumulate excess undifferentiated cells in the shoot and floral meristem, while stm mutants fail to form the undifferentiated cells of the shoot meristem during embryonic development. We have identified a weak allele of stm (stm-2) that reveals STM is not only required for the establish- ment of the shoot meristem, but is also required for the continued maintenance of undifferentiated cells in the shoot meristem and for proper proliferation of cells in the floral meristem. We have found evidence of genetic interactions between the CLV and STM loci. clv1 and c1v3 mutations partially suppressed the stm-1 and stm-2 phenotypes, and were capable of suppression in a dominant fashion. clv stm double mutants and plants homozygous for stm but heterozygous for clv, while still lacking an embryonic shoot meristem, exhibited greatly enhanced postembryonic shoot and floral meristem development. Although stm phenotypes are recessive, stm mutations dominantly suppressed clv homozygous and heterozygous phenotypes. These results indicate that the stm phenotype is sensitive to the levels of CLV activity, while the clv phenotype is sensitive to the level of STM activity. We propose that these genes play related but opposing roles in the regulation of cell division and/or cell differentiation in shoot and floral meristems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern formation during de novo assembly of the Arabidopsis shoot meristem.

Most multicellular organisms have a capacity to regenerate tissue after wounding. Few, however, have the ability to regenerate an entire new body from adult tissue. Induction of new shoot meristems from cultured root explants is a widely used, but poorly understood, process in which apical plant tissues are regenerated from adult somatic tissue through the de novo formation of shoot meristems. ...

متن کامل

The interaction of knotted1 and thick tassel dwarf1 in vegetative and reproductive meristems of maize.

In Arabidopsis, SHOOT MERISTEMLESS (STM) and CLAVATA1 (CLV1) competitively regulate meristem homeostasis. Here, we explore the interaction of their maize homologs knotted1 (kn1) and thick tassel dwarf1 (td1). kn1 mutants form fewer lateral organs and td1 inflorescences are fasciated with additional floral organs. Double mutants show kn1 epistatic to td1 in seedling and ear development but dose-...

متن کامل

Specification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development

In Arabidopsis floral meristems are specified on the periphery of the inflorescence meristem by the combined activities of the FLOWERING LOCUS T (FT)-FD complex and the flower meristem identity gene LEAFY. The floral specification activity of FT is dependent upon two related BELL1-like homeobox (BLH) genes PENNYWISE (PNY) and POUND-FOOLISH (PNF) which are required for floral evocation. PNY and ...

متن کامل

The Arabidopsis OBERON1 and OBERON2 genes encode plant homeodomain finger proteins and are required for apical meristem maintenance.

Maintenance of the stem cell population located at the apical meristems is essential for repetitive organ initiation during the development of higher plants. Here, we have characterized the roles of OBERON1 (OBE1) and its paralog OBERON2 (OBE2), which encode plant homeodomain finger proteins, in the maintenance and/or establishment of the meristems in Arabidopsis. Although the obe1 and obe2 sin...

متن کامل

Initiation of shoot apical meristem in rice

In flowering plants, the fundamental body plan is constructed during embryogenesis. The fertilized egg first sets up apicalbasal, radial and dorsal-ventral axes, which are later partitioned to differentiate region-specific organs. The shoot and root apical meristems arise as terminal elements of apical-basal axes. The establishment of shoot apical meristem (SAM) during embryogenesis is a key ev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 122 5  شماره 

صفحات  -

تاریخ انتشار 1996